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Abstract—A multi-scale attention based channel estimation
framework is proposed for reconfigurable intelligent surface
(RIS) aided massive multiple-input multiple-output systems, in
which hardware imperfections and time-varying characteristics
of the cascaded channel are investigated. By exploiting the spatial
correlations of different scales in the RIS reflection element
domain, we construct a Laplacian pyramid attention network
(LPAN) to realize the high-dimensional cascaded channel recon-
struction with limited pilot overhead. In LPAN, we leverage
the multi-scale supervision learning to progressively capture
the spatial correlations of the cascaded channel, where the
attention mechanism based dual-branch architecture is designed.
To balance network performance and complexity of LPAN, we
further propose a lightweight LPAN-L architecture. In LPAN-L,
the partial standard convolutional layers are decomposed into
the group convolution, dilated convolution and point-wise con-
volution, which forms a sparse convolutional filter set to extract
the channel feature with less computation cost. Furthermore,
we leverage parameter sharing and recursion strategy to reduce
the space complexity. Moreover, a selective fine-tuning strategy
is developed to realize the domain adaption. Simulation results
show that the proposed LPAN can achieve higher estimation
accuracy than the existing estimation schemes, while the LPAN-L
architecture with a close performance to LPAN efficiently reduces
the network complexity1.

Index Terms—Reconfigurable intelligent surface, channel esti-
mation, multi-scale attention, hardware impairments.

I. INTRODUCTION

CONSIDERING the enormous communication bandwidth
available at the high frequency band, millimeter wave

(mmWave) has been regarded as a promising communica-
tion frequency for the future wireless communication sys-
tem. However, the significant path loss of high-frequency
electromagnetic waves limits the coverage of mmWave com-
munication [2]. The intuitive solutions are to deploy denser
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access points (APs) or to integrate more antennas into com-
munications equipment, e.g., massive multiple-input multiple-
output (MIMO) communication, which will result in expensive
hardware cost and much energy consumption. Fortunately,
the reconfigurable intelligent surface (RIS), comprised of
densely packed sub-wavelength units, provides new possibility
to enhance mmWave communication with low cost and energy
[3]. The electromagnetic response of each RIS unit is tunable
by adjusting the size or spatial arrangement. By utilizing the
unique electromagnetic properties, RISs have been applied
in various communication scenarios to improve the system
performance, e.g., wireless power transfer, mobile edge com-
puting, and multi-hop Terahertz communications [4]. The most
promising applications of RIS depend on the accurate channel
state information to design the passive beamforming of RIS.
However, the channel estimation is the key challenge for RIS-
aided massive MIMO communication system [5].

Since the passive RIS is not equipped with radio frequency
(RF) chains, channel estimation can only be carried out at
the base station (BS) or the user equipment (UE). It has been
verified in [6] that the performance gain of the RIS is superior
to the traditional relay technology only when there are a large
number of reflection elements on RIS. The increasing number
of reflection units will increase the dimension of BS-RIS-
UE cascaded channel matrix correspondingly. However, high-
dimensional channel estimation requires more pilot overhead,
which will significantly reduce communication spectrum effi-
ciency. Besides, the hardware imperfection of communication
devices also retrograde the accuracy of channel estimation in
practical communication systems, i.e., the hardware impair-
ments (HWIs) at the RIS and terminals [7].

A. Prior Works

To reduce the pilot overhead of channel estimation for
RIS-aided communication system, many works have provided
various design ideas, e.g., the semi-passive channel estimation
by equipping with dedicated sensing devices in RIS [8]–[10],
the compressed sensing (CS)-based sparse channel estimation
by exploiting the sparsity of RIS channel [11]–[13], and
the deep learning (DL)-based intelligent channel estimation
scheme [15], [18], [19].

1) Semi-passive channel estimation schemes: In the semi-
passive channel estimation scheme, limited RF chains are
mounted with the RIS to process the received signal, so the
BS/UE-RIS channel can be separately estimated [5], which
can effectively reduce the complexity of channel estimation.
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In [8], the cascaded channel estimation was divided into
direction-of-arrival (DOA) and path gain estimation, where the
DOA estimation was implemented by using the RF chains.
The work of [9] proposed the sparse Bayesian learning-based
channel reconstruction method and design an efficient data
transmission strategy. In [10], an algebraic algorithm was
designed to recover the multipath parameters of the BS/UE-
RIS channel. However, it is necessary to configure cables
or power supplies for the semi passive channel estimation,
which limits the diversity of RIS application scenarios and
also increases the energy consumption.

2) Sparse channel estimation schemes: Since wireless
channels are often sparse in a certain transform domain,
e.g., angular domain for the high-frequency communication
[11]–[13], the CS has been widely used in the RIS channel
estimation. The authors in [11] used the properties of Katri-
Rao and Kronecker product to derive a sparse represen-
tation of cascaded channels. In [12], the double-structured
orthogonal matching pursuit (OMP) was proposed by utilizing
the common angle domain sparsity of multi-user cascaded
channel. In [13], a two-step channel estimation scheme was
proposed, in which the mmWave channel sparsity and multi-
user correlations are leveraged to reduce the required pilot
overhead. The CS-based channel estimation need found the
pure sparse representation to avoid the grid mismatch, and then
uses iterative method to approximate the solution. However,
the authors in [14] believes that there is no theory can
accurately prove that the CS model can obtain the most sparse
representation of the channel especially for dynamic sparsity
channel in the complex communication scenarios.

3) Intelligent channel estimation schemes: By leveraging
the non-linear mapping ability of neural network, the channel
estimation model can be constructed to realize the mapping
from pilot signal to channel matrix. The authors in [15] first
estimates a initial channel matrix using (least square) LS
algorithm, and then obtains the accurate channel matrix using
convolutional neural network (CNN). However, in this LS
pre-estimation based channel estimation schemes, the required
minimum pilot overhead was not reduced, which was equal to
the LS estimation. Single image super-resolution (SR) recon-
struction technologies provided another feasible framework for
wireless channel estimation, whose theoretical foundation is
the natural correlations of channel matrix, e.g., the correlations
of time-frequency and spatial domain. In [16], super-resolution
CNN (SRCNN) was applied to recover the complete time-
frequency channel from partial channel of pilot subcarriers.
However, the reconstruction performance of SRCNN was lim-
ited due to the simple network architecture. In [17], enhanced
SR network (EDSR) was used to further improve the channel
estimation accuracy by introducing the residual learning. Since
the metamaterial units of RIS are generally integrated closely,
the channels at the neighboring units are highly correlated in
spatial domain. Hence, the design ideas in [16], [17] have
been extend to the RIS-aided communication system. In [18],
the low-dimensional cascaded channel matrix was obtained
by opening partial RIS elements firstly, and then SRCNN was
applied to recover the high-dimensional cascaded channel from
the low-dimensional cascaded channel matrix. The work of

[19] considered the part of cascaded channel estimation based
on EDSR, where some active elements were equipped with
RIS to acquire the initial channel information.

B. Motivations and Contributions

Against the above background, there are two main chal-
lenges for the existing channel estimation schemes based on
the SR network. Firstly, for the SR model proposed in [16]–
[19], the channel extrapolation was realized in merely one
upsampling step, e.g., the pre-upsampling in the input layer
of SRCNN [16], [18] or the post-upsampling in the output
layer of EDSR [17], [19], which restricts the reconstruction
precision of high-dimensional channel estimation due to the
larger upscaling factor. Secondly, in the two-stage SR es-
timation model, the coarse low-dimensional channel matrix
obtained by limited pilot overhead is used as the input of the
network, which makes the reconstruction performance of the
complete channel matrix depend on the accuracy of initial
channel estimation. In particular, the imperfect hardware at the
RIS and terminals will significantly reduce the initial channel
estimation performance of the SR network due to the huge
noise imposed on the input data.

Motivated by the above challenges, we propose a multi-
scale attention based cascaded channel estimation framework
for the RIS-aided multi-user massive MIMO communication
system with the practical HWIs. The main contributions can
be summarized as follows.
• We propose a Laplacian pyramid attention network

(LPAN) to progressively reconstruct the cascaded channel
matrix in a coarse-to-fine fashion, which can better cap-
ture the spatial correlations in high-dimensional reflection
element domain of RIS. With the increase of network lay-
ers, the representation of the neural network will contain
more high-frequency information. Hence, we introduce
residual learning to fuse the high-frequency and low-
frequency features of cascaded channel by designing the
dual-branch architectures, i.e., feature extraction branch
(FEB) and channel reconstruction branch (CRB).

• We integrate the attention mechanism into FEB in the
LPAN, which effectively improve the channel feature
learning ability of each spatial scale. Compared with the
existing work [20] that applied the attention mechanism
for the massive MIMO channel estimation fully following
the Squeeze-and-Excitation Network (SENet) in com-
puter vision [21], we rethink the specific characteristic
of wireless channels and further design the improved
channel attention mechanism. Furthermore, we merge the
attention map of different spatial-scale channel matrices
in the pyramid network, which are more suitable for
the "divide-and-conquer" policy in the large-scale array
communication system.

• We construct the lightweight version of LPAN, which
is termed as LPAN-L, to reduce the parameters and
the computational complexity of the proposed LPAN by
exploiting efficient convolution operations and network
backbone. Specifically, we combine group convolution,
dilated convolution and point-wise convolution layers
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to replace the standard convolutional layer in the clas-
sic CNN architecture. Furthermore, the recursion design
within each pyramid level and parameter sharing strategy
across pyramid levels is leveraged to reduce the network
parameters. Moreover, by leveraging the multi-scale pyra-
mid architecture of LPAN-L, we develop a selective fine-
tuning based transfer learning framework to realize the
cross-domain adaption of the LPAN-L model.

• Our numerical results show that the channel estimation
performance of the proposed LPAN is superior to the ex-
isting classic algorithm and other DL models. Compared
with LPAN, the further optimized LPAN-L can reduce
approximately half of the complexity, while achieving
a close performance to LPAN. The generalization and
robustness of the LPAN-L are verified under different
system setups, i.e., different degrees of HWIs and user
mobility. The proposed transfer learning framework can
be applied the LPAN-L model into different communi-
cation scenarios with limited target domain samples and
training cost.

Note that compared with the conference version [1], this
work further increases the contributions in terms of the sys-
tem modeling and the network architecture design. Firstly,
in the system model and problem formulation, we consider
more practical RIS assisted mmWave systems, in which both
hardware imperfections of the RIS/terminals and time-varying
channel characteristics are investigated. Secondly, we intro-
duce the attention mechanism into the Laplacian pyramid
network to enhance the network representation ability and
further exploit a lightweight LPAN-L architecture. Thirdly, we
develop a transfer learning framework to deal with the domain
mismatch problem in the practical deployment of the proposed
LPAN-L model.

C. Organizations and Notations

Organizations: The remainder of the paper is organized as
follows. Section II introduces the system model of RIS-aided
multi-user mmWave communication system with HWIs. In
Section III, we propose the LPAN to realize the progressive
reconstruction of cascaded channel. In order to reduce the
network complexity in the progressive reconstruction frame-
work, we further design the low-complexity LPAN-L model
in Section IV. Section V and VI provide numerical results and
conclusions, respectively.

Notations: Lower-case and upper-case boldface letters a and
A denote a vector and a matrix, respectively; A𝑇 , A𝐻 and A†

denote the transpose, conjugate transpose, and pseudo inverse
of matrix A, respectively; 𝑎∗ denotes the conjugate of complex
number 𝑎; diag(a) denotes the diagonal matrix with the vector
a on its diagonal; | | � | |𝐹 denote the Frobenius norm; ⌊𝑥⌋
denotes the smallest integer that is greater than or equal to
𝑥. Moreover, ⊙ and ⊗ denotes the Hadamard product and
convolution, respectively. I𝑎 is the 𝑎 × 𝑎 identity matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first model the clustered mmWave chan-
nel for RIS-aided multi-user massive MIMO communication
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Fig. 1. The three-dimensional RIS-aided mmWave communication environ-
ment with random scattering elements.

system. Then, we formulate the uplink channel estimation
problem and present the challenge for classic channel esti-
mation scheme, where the hardware impairments at the RIS,
transmitter, and receiver are considered.

A. Channel Model

As shown in Fig. 1, we consider the uplink of the RIS-aided
multi-user mmWave communication system, where 𝐾 single-
antenna UEs at the x-y plane simultaneously communicate
the BS with 𝑀 = 𝑀1 × 𝑀2 uniform planar array (UPA)
antennas via the RIS with 𝑁 = 𝑁1 × 𝑁2 reflection elements at
the x-z plane. Let G and h𝑘 represent the RIS-BS channel
and the UE𝑘-RIS channel, respectively. Following the 3rd
generation partnership project (3GPP) standard [22] and the
channel modeling in [23], the clustered statistical MIMO
channel model is used to capture the dynamic variations of
the environmental objects, e.g., a large number of randomly
distributed scattering elements between the terminals and the
RIS. The RIS-BS channel G = GNLOS + GLOS ∈ C𝑀×𝑁 can
be represented as

G =

√︂
𝐺𝑒

(
𝜑
𝐺𝑡

LOS

)
𝐿
𝐺𝑡

LOSb
(
𝜙
𝐺𝑟

LOS, 𝜑
𝐺𝑟

LOS

)
a𝑇

(
𝜙
𝐺𝑡

LOS, 𝜑
𝐺𝑡

LOS

)
︸                                                               ︷︷                                                               ︸

GLOS

+ 𝛾̄
𝐶̄∑︁
𝑐=1

𝑆̄𝑐∑︁
𝑠=1

𝛽𝑐,𝑠

√︂
𝐺𝑒

(
𝜑
𝐺𝑡
𝑐,𝑠

)
𝐿
𝐺𝑡
𝑐,𝑠b

(
𝜙𝐺𝑟
𝑐,𝑠, 𝜑

𝐺𝑟
𝑐,𝑠

)
a𝑇

(
𝜙𝐺𝑡
𝑐,𝑠, 𝜑

𝐺𝑡
𝑐,𝑠

)
︸                                                                          ︷︷                                                                          ︸

GNLOS

,

(1)

where 𝐶̄ and 𝑆𝑐 denote the total number of clusters and scatters
in the 𝑐-th cluster between BS and RIS for non-line of sight
(NLOS) component, respectively. The parameter 𝛾̄ =

√︃
1∑𝐶

𝑐=1 𝑆𝑐
is a normalization factor in the clustered channel model. The
parameter 𝛽𝑐,𝑠 ∼ CN(0, 1) is the propagation path gain of the
scatter (𝑐, 𝑠). The parameter 𝐺𝑒

(
𝜑
𝐺𝑡
𝑐,𝑠

)
= 2(2𝜉+1)cos2𝜉

(
𝜑
𝐺𝑡
𝑐,𝑠

)
denotes the RIS elements pattern for the scatter (𝑐, 𝑠), where
𝜉 determines the gain of the element [24]. The path loss 𝐿𝐺𝑡

𝑐,𝑠
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in the (𝑐, 𝑠)-th scatter can be expressed as [25]

𝐿𝐺𝑡
𝑐,𝑠 = −20log10

(
4𝜋
𝜆

)
− 10𝑛

(
1 + 𝑏0

(
𝑓𝑐 − 𝑓0
𝑓0

))
log10

(
𝑑𝑐,𝑠

)
− 𝑋𝜎𝑥

, (2)

where 𝜆, 𝑛0, 𝑏0, 𝑓𝑐 and 𝑓0 stand for the carrier wavelength,
path loss exponent, model parameter, carrier and reference
frequency, respectively. 𝑑𝑐,𝑠 represents the ray path length of
the (𝑐, 𝑠)-th scatter and 𝑋𝜎𝑥

∼ CN(0, 𝜎𝑥2) is a shadow factor.

𝜙
𝐺𝑡
𝑐,𝑠 (𝜑𝐺𝑡

𝑐,𝑠) and 𝜙𝐺𝑟
𝑐,𝑠 (𝜑𝐺𝑟

𝑐,𝑠) represent the azimuth (elevation)
angle of departure at the RIS, and the azimuth (elevation)
angle of arrival at the BS for the (𝑐, 𝑠)-th path, respectively.
The azimuth departure angles (𝜙𝐺𝑡

𝑐,𝑠 , 𝑠 = 1, . . . , 𝑆𝑐) follow the
conditional Laplacian distribution 𝜙𝐺𝑡

𝑐,𝑠 ∼ L
(
𝜙
𝐺𝑡
𝑐 , 𝜎𝜙

)
, where

𝜙
𝐺𝑡
𝑐 follows a uniform distribution 𝜙

𝐺𝑡
𝑐 ∼ U[−𝜋/2, 𝜋/2] and

𝜎𝜙 denotes a constant angular spread [26]. Similarly, the
elevation departure angles are given by 𝜑

𝐺𝑡
𝑐,𝑠 ∼ L

(
𝜑
𝐺𝑡
𝑐 , 𝜎𝜑

)
,

where 𝜑𝐺𝑡
𝑐,𝑠 ∼ U[−𝜋/4, 𝜋/4] and 𝜎𝜑 denotes angular spread.

a (𝜙, 𝜑) ∈ C𝑁×1 and b (𝜙, 𝜑) ∈ C𝑀×1 denote the array
response at the RIS and the BS, respectively. Specifically, the
UPA array response a (𝜙, 𝜑) at the RIS can be represented as

a (𝜙, 𝜑) =
[
1, · · · 𝑒 𝑗2𝜋𝑑 (𝑥𝑠𝑖𝑛𝜑+𝑦 sin 𝜙 cos 𝜑)/𝜆,

· · · , 𝑒 𝑗2𝜋𝑑 ( (𝑁1−1)𝑠𝑖𝑛𝜑+(𝑁2−1) sin 𝜙 cos 𝜑)/𝜆
]𝑇
, (3)

where 0 ≤ 𝑥 ≤ 𝑁1 − 1 and 0 ≤ 𝑦 ≤ 𝑁2 − 1. The scalar 𝑑
denotes the antenna spacing.

Similarly, the UE𝑘-RIS channel h𝑘 = h𝑘NLOS +h𝑘LOS ∈ C𝑁×1

can be represented as

h𝑘 =
√︂
𝐺𝑒

(
𝜑
𝑟 ,𝑘

LOS

)
𝐿
𝑟 ,𝑘

LOSa
(
𝜙
𝑟 ,𝑘

LOS, 𝜑
𝑟 ,𝑘

LOS

)
︸                                       ︷︷                                       ︸

h𝑘
LOS

+ 𝛾̂
𝐶∑︁
𝑐=1

𝑆𝑐∑︁
𝑠=1

𝛽𝑐,𝑠

√︂
𝐺𝑒

(
𝜑
𝑟 ,𝑘
𝑐,𝑠

)
𝐿
𝑟 ,𝑘
𝑐,𝑠a

(
𝜙𝑟 ,𝑘𝑐,𝑠 , 𝜑

𝑟 ,𝑘
𝑐,𝑠

)
︸                                                     ︷︷                                                     ︸

h𝑘
NLOS

, (4)

where 𝐶 and 𝑆 represent the total number of clusters and
scatters in the 𝑐-th cluster between the RIS and the UE𝑘 ,
respectively. The normalization factor 𝛾̂ satisfies 𝛾̂ =

√︂
1∑𝐶

𝑐=1 𝑆𝑐

and 𝛽𝑐,𝑠 ∼ CN(0, 1) denotes path gain. The parameters
𝐺𝑒

(
𝜑
𝑟 ,𝑘
𝑐,𝑠

)
and 𝐿

𝑟 ,𝑘
𝑐,𝑠 represent the RIS element gain and path

loss, respectively. 𝜙𝑟 ,𝑘𝑐,𝑠 (𝜑𝑟 ,𝑘𝑐,𝑠 ) denotes the azimuth (elevation)
angle at the RIS.

Based on above statistical MIMO channel model, we further
consider RIS assisted high-mobility communication scenarios,
in which UE𝑘 is moving with speed 𝑣 at the 𝑥-𝑦 plane. Due
to the severe Doppler effect caused by the user mobility, the
time-varying UE𝑘-RIS channel h𝑘,𝑛 at the 𝑛-th time block can

be expressed as

h𝑘,𝑛 = 𝜁𝑟 ,𝑘LOSa
(
𝜙
𝑟 ,𝑘

LOS, 𝜑
𝑟 ,𝑘

LOS

)
𝑒 𝑗2𝜋 (𝑛𝑇𝑠 𝑓

𝑑
LOS− 𝑓𝑐 𝜏LOS )︸                                               ︷︷                                               ︸

h𝑘
LOS

+ 𝛾̂
𝐶∑︁
𝑐=1

𝑆𝑐∑︁
𝑠=1

𝛽𝑐,𝑠𝜁
𝑟 ,𝑘

(𝑐,𝑠)a
(
𝜙𝑟 ,𝑘𝑐,𝑠 , 𝜑

𝑟 ,𝑘
𝑐,𝑠

)
𝑒 𝑗2𝜋 (𝑛𝑇𝑠 𝑓

𝑑
𝑐,𝑠− 𝑓𝑐 𝜏𝑐,𝑠 )︸                                                                ︷︷                                                                ︸

h𝑘
NLOS

, (5)

where 𝑇𝑠 is sampling period, 𝜁𝑟 ,𝑘𝑢 =

√︂
𝐺𝑒

(
𝜑
𝑟 ,𝑘
𝑢

)
𝐿
𝑟 ,𝑘
𝑢 with the

indicator 𝑢 ∈ {LOS, (𝑐, 𝑠)}. Parameters 𝜏𝑢 and 𝑓 𝑑𝑢 denote the
delay and Doppler frequency shift of the LOS path or scatter
(𝑐, 𝑠) path, respectively, in which 𝑓 𝑑𝑢 is given by

𝑓 𝑑𝑢 = 𝑣cos(𝜙𝑘𝑛)cos(𝜑𝑘𝑛)/𝜆, (6)

where 𝜙𝑘𝑛 (𝜑𝑘𝑛) denote the azimuth (elevation) angle at UE𝑘
at the 𝑛-th time block, respectively. The maximum Doppler
frequency is 𝑓 𝑑max = 𝑣 𝑓𝑐/𝑐, in which 𝑐 is the speed of light.

B. Problem Formulation

By turning off the all reflection elements for RIS-aided
communication system, the direct channel estimation from
the UE to the BS is similar with conventional commu-
nication system. As such, we mainly focus on the high-
dimensional cascaded channel estimation problem. Let θ =

[𝛽1𝑒
𝑗 𝜃1 , 𝛽2𝑒

𝑗 𝜃2 , · · · , 𝛽𝑁 𝑒 𝑗 𝜃𝑁 ]𝑇 ∈ C𝑁×1 denote the RIS re-
flecting coefficients, where 𝜃𝑖 (𝑖 = 1, 2, · · · , 𝑁) and 𝛽𝑖 ∈ {0, 1}
denote the phase shift and the ON/OFF state of the 𝑖-th
RIS element. We consider practical restrictions for ON/OFF
reflection modes of the RIS [27], which can be expressed as

𝛽𝑖 =

{
1 − 𝜖1 ON
0 + 𝜖0 OFF, (7)

where non-negative constants 𝜖1 and 𝜖0 model these realistic
implementation errors in ON and OFF modes, respectively.
Except the amplitude control error of reflection elements, there
is the reflection phase error due to the intrinsic hardware
imperfection of the passive reflectors, e.g., the reflection
phase quantization noise 𝜃𝑖 [28]. Specifically, the practical
reflecting phase shift 𝜃𝑖 satisfies 𝜃𝑖 = 𝜃𝑖 + 𝜃𝑖 , in which
𝜃𝑖 ∼ U[−2−𝑏𝜋, 2−𝑏𝜋] and 𝑏 denotes the phase quantization
bits. In the 𝑞-th (𝑞 = 1, 2, · · · , 𝑄) pilot slots, the received
signal y𝑞 ∈ C𝑀×1 at the BS is given by

y𝑞 =

𝐾∑︁
𝑘=1

Gdiag(θ𝑞)h𝑘𝑠𝑞,𝑘 + w𝑞

=

𝐾∑︁
𝑘=1

Gdiag(h𝑘)θ𝑞𝑠𝑞,𝑘 + w𝑞 , (8)

where θ𝑞 = [𝛽1,𝑞𝑒
𝑗 𝜃1,𝑞 , 𝛽2,𝑞𝑒

𝑗 𝜃2,𝑞 , · · · , 𝛽𝑁,𝑞𝑒 𝑗 𝜃𝑁,𝑞 ]𝑇 ∈
C𝑁×1, 𝑠𝑞,𝑘 denotes the pilot sent by the 𝑘-th UE with
E[𝑠𝑞,𝑘𝑠∗𝑞,𝑘] = 𝑝𝑘 , and w𝑞 ∼ CN(0, 𝜎2

𝑛 𝐼𝑀 ) stands for Gaus-
sian noise. Let H𝑘 = Gdiag(hk) ∈ CM×N be denoted as the
cascaded channel.
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We consider the residual hardware impairments at the BS
and the UE due to the non-ideality of the hardware in practical
communication system, which can be modeled as the additive
Gaussian distribution [7]. Moreover, the multiplicative phase
drift 𝜀𝑞 = 𝑒 𝑗𝜓𝑞 caused by the local oscillator at the receiver
is also considered, in which 𝜓𝑞 ∼ N(𝜓𝑞−1, 𝛿o) follows the
Wiener process and 𝛿o denotes the oscillator quality. In this
case, we rewrite (8) as

ỹ𝑞 = 𝜀𝑞

𝐾∑︁
𝑘=1

H𝑘θ𝑞 (𝑠𝑞,𝑘 + 𝜂𝑡𝑞,𝑘) + w𝑞 + 𝜂𝑟𝑞 , (9)

where 𝜂𝑡
𝑞,𝑘

∼ CN(0, 𝜌2
𝑡 ,𝑘
𝑝𝑘) denotes the distortion

of transmitted signal caused by HWIs at UE𝑘 . 𝜂𝑟𝑞 ∼
CN(0, 𝜌2

𝑟p𝑟 ) denotes the HWIs at the BS with p𝑟 =∑𝐾
𝑘=1

(
𝑝𝑘I𝑀 ⊙ (H𝑘θ𝑞) (H𝑘θ𝑞)𝐻

)
. The 𝜌𝑡 ,𝑘 and 𝜌𝑟 stands for

the error vector magnitudes (EVM) at UE𝑘 and BS [27],
respectively.

Define 𝑠̃𝑞,𝑘 = 𝑠𝑞,𝑘 + 𝜂𝑡
𝑞,𝑘

and w̃q = w𝑞 + 𝜂𝑟𝑞 . After 𝑄
time slots of pilot transmission, we can collect the 𝑀 × 𝑄
observation matrix Y = [̃y1, ỹ2, · · · , ỹ𝑄] at the BS, which is
given by

Y =

𝐾∑︁
𝑘=1

H𝑘θs𝐻𝑘 + W, (10)

where s𝑘 =
[
𝑠̃𝑘,1, 𝑠̃𝑘,2, · · · , 𝑠̃𝑘,𝑄

]
∈ C𝑄×1 and s𝐻

𝑘
s𝑘 = 𝑝𝑘𝑄.

The joint noise matrix W = [w̃1, w̃2, · · · , w̃𝑄] ∈ C𝑀×𝑄.

The orthogonal pilot transmission strategy is widely used
to realize the multi-user channel estimation based on DL
framework [15], i.e., s𝐻

𝑘1
s𝑘2 = 0 for 1 ≤ 𝑘1, 𝑘2 ≤ 𝐾 and

𝑘1 ≠ 𝑘2. Consequently, we can separate the received pilot
signal of different users at the BS, which can be expressed as

Ỹ𝑘 =
1
𝑝𝑘𝑄

Ys𝑘 = H𝑘θ + W̃𝑘 , (11)

where W̃𝑘 =
1
𝑝𝑘𝑄

Ws𝑘 .

In the classic LS estimator [27], the estimated cascaded
channel can be expressed as

Ĥ𝑘 = Ỹ𝑘θ†, (12)

where θ† = θ𝐻
(
θθ𝐻

)−1.

Remark 1: Due to the constraint of full-rank condition in
(10), the required pilot overhead satisfy 𝑄 ≥ 𝑁 for the conven-
tional LS estimator, which causes intractable training overhead
for the RIS with a large number of reflection elements. An
alternative is to take advantage of the sparsity of H in a specific
transform domain φ. For example, in the angular domain, the
channel can be represented as H = φHa, where Ha is a sparsity
matrix with 𝑘 ≪ 𝑀 × 𝑁 non-zero elements. However, the
correlation of the wireless channel in practical communication
scenarios is hardly to be confined to a single transform domain
φ that fully represent the internal sparse structure of H [14].
In addition, the HWIs of RIS and communication devices will
significantly affect the channel estimation performance for the
mathematic model-based deterministic schemes.

III. MULTI-SCALE ATTENTION-AIDED LAPLACIAN
PYRAMID ATTENTION NETWORK (LPAN)

In this section, we first design the dataset construction
for the progressive channel estimation scheme. Then, we
present the channel attention mechanism, Laplacian pyramid
framework, and the detailed LPAN architecture with dual
branch. Lastly, we design the multi-scale supervised training
method to realize the cascaded channel reconstruction under
different scales.

A. Dataset Construction

The basic idea of dataset construction follows the SR-based
channel estimation scheme, which can be divided into two sub-
stage. In the first stage, we utilize the conventional channel
estimator to obtain the partial channel matrix with limited
pilot overhead. Then a SR network is designed to recover
the complete channel matrix. In contrast to the existing SR-
based channel estimation schemes, we proposed a progressive
channel reconstruction scheme to better capture the spatial
correlations in the cascaded channel, where the extrapolation
of channel matrix is carried out under different scales.

In the channel pre-estimation stage, we adopt the LS pre-
estimation presented in (12) to obtain the low-dimensional par-
tial cascaded channel matrix ĤP

𝑘
∈ R𝑀×𝑃 . Specifically, we se-

lect P = {1, Γ + 1, · · · , (𝑃 − 1) × Γ + 1}
(
𝑃 =

⌊
𝑁−1
Γ

+ 1
⌋ )

RIS
elements with the interval Γ = 2𝑆 (0 ≤ 𝑆 ≤ log2 𝑁) as a subset
of whole RIS elements, and then estimate the partial cascaded
channel matrix by controlling the reflection vector of subset
elements. We resort to the discrete Fourier transform (DFT)
protocol in [30] to control the reflection vector of subset ele-
ments in the channel estimation stage, i.e., θ𝑞 = [1, · · · , 𝜃𝑖=𝑞 =

𝑒− 𝑗2𝜋 (𝑞−1) (𝑖−1)/𝑄, · · · , 𝜃𝑖=𝑃 = 𝑒− 𝑗2𝜋 (𝑞−1) (𝑃−1)/𝑄]𝑇 at the 𝑞-
th slot. Due to the phase quantization noise and hardware
imperfection, the practical RIS reflection coefficients are given
by θ𝑞 = [𝛽1, · · · , 𝜃𝑖=𝑞 = 𝛽𝑖𝑒

− 𝑗 (2𝜋 (𝑞−1) (𝑖−1)/𝑄+𝜃𝑖 ) , · · · , 𝜃𝑖=𝑃 =

𝛽𝑃𝑒
− 𝑗 (2𝜋 (𝑞−1) (𝑃−1)/𝑄+𝜃𝑃 ) ]𝑇 at the 𝑞-th slot for the dataset

construction.
In the dataset construction, we consider two cases of quasi-

static channel and time-varying channel estimation. For the
quasi-static channel channel estimation, the flat-fading channel
H𝑘 remains approximately constant within each frame. Hence,
the estimated channel at the pilot block can be used into
the data transmission stage in the same frame. In this case,
we define H̄P ∈ R𝑀×𝑃×2 as the input data of channel
extrapolation network, and H̄P

𝑚,𝑝,1 = Re(ĤP) and H̄P
𝑚,𝑝,2 =

Im(ĤP) (1 ≤ 𝑚 ≤ 𝑀), as the real and imaginary components,
respectively. We design the label group H̄ = (H̄1, H̄2, · · · , H̄𝑆)
to achieve the progressive reconstruction of the cascaded
channel, where H̄𝑆 represents the complete cascaded channel
matrix and H̄𝑠 ∈ R𝑀×2𝑠𝑃×2 (1 ≤ 𝑠 ≤ 𝑆) is the spatial sampling
with scaling factor 𝑠 of the complete cascaded channel.

For the time-varying channel estimation, the channels of
consecutive time blocks within a frame may vary due to the
short channel coherence time 𝑇𝑐. Fig. 2 shows the specific
frame structure with 𝐵 time blocks for the time-varying chan-
nel estimation, which is divided into 𝐵p pilot blocks and 𝐵d
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Fig. 2. The specific frame structure for time-varying channel estimation.
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Fig. 3. The improved channel attention block.

data blocks, i.e., 𝐵p+𝐵d = 𝐵. The channel at the 𝑛(1 ≤ 𝑛 ≤ 𝐵)-
th data block need to be predicted from the estimated channels
at pilot blocks. In this case, the input tensor H̃P ∈ R𝑀×𝑃×2𝐵p

of the channel estimation network is the concatenation of
pre-estimated channels at 𝐵p pilot blocks. Accordingly, the
output tensor Ĥ ∈ R𝑀×𝑁×2𝐵 of the network denotes the
concatenation of cascaded channels of all time blocks within
a frame. By constructing similar label group with the quasi-
static channel estimation, i.e., H̃ = (H̃1, H̃2, · · · , H̃𝑆) with
the spatial sampling channel H̃𝑠 ∈ R𝑀×2𝑠𝑃×2𝐵, the multi-
scale supervision training framework can be developed for the
cascaded channel estimation.

B. Channel Attention Mechanism

The attention mechanism has been widely applied in nu-
merous DL tasks, which can enhance local useful features
and suppress other useless information. Fig. 3 shows the
designed channel attention block (AB) based on classic SENet
architecture [21], which sets adaptive weights for different
channels in the feature map. Note that some more advanced
attention mechanism have been proposed in the DL field.
Compared with other attention mechanisms, the architecture
of AB is more simple and concise, which only introduces an
extra branch to learn a set of attention weights compared with
the classic residual block [32] Besides, the adaptive learning
of AB is efficient for channel estimation, which conform to the
“divide-and-conquer” policy in the traditional large-scale array
communications [20]. As such, the improved AB is exploited
to the RIS channel estimation in the following.

Let X𝑖 ∈ R𝐶×𝐷1×𝐷2 denote the input feature map in the
𝑖-th AB, where 𝐶, 𝐷1 and 𝐷2 denote the channel, height
and width of feature map X𝑖 , respectively. Firstly, we stack

two convolution layer with 𝐶 filters to obtain the feature F𝑖 =
[f1, f2, · · · f𝐶 ] ∈ R𝐶×𝐷1×𝐷2 . Then, we adopt the global average
pooling to shrink F𝑖 through spatial dimensions 𝐷1 × 𝐷2.
Let z𝑖 = [𝑧1, 𝑧2, · · · 𝑧𝑐, · · · , 𝑧𝐶 ]𝑇 ∈ R𝐶×1 denote the channel
statistic of F𝑖 , where 𝑧𝑐 is given by

𝑧𝑐 =
1

𝐷1 × 𝐷2

𝐷1∑︁
𝑑1=1

𝐷2∑︁
𝑑2=1

f𝑐 (𝑑1, 𝑑2). (13)

In the learning process of attention weight for the original
SENet, two fully connected (FC) layers are designed to capture
non-linear cross-channel interaction, which involves dimen-
sionality reduction for controlling model complexity, and the
attention architecture also be adopted in the existing works for
channel estimation of massive MIMO systems [20]. However,
the dimensionality reduction between two FC layers destroys
the direct correspondence between channel and its weight
[33]. Consequently, we adopt a FC layer with 𝐶 neurons to
realize the direct connection between channel and weights,
which can capture the channel-wise dependencies. Moreover,
the Sigmoid activation function is used to obtain the attention
weight α = 𝛿(WFCz𝑖) ∈ 𝐶×1, where WFC ∈ 𝐶×𝐶 denotes the
weight of the FC layer and 0 ≤ 𝛿(𝑥) = 1

1+𝑒−𝑥 ≤ 1. In general,
the Sigmoid activation function confines the attention weight 𝛼
to the range of (0, 1), which is suitable for positive real-valued
pixel in the computer vision. However, the communication
data in the considered scenario is complex-valued, whose
amplitude and phase information can not be well characterized
by the Sigmoid function.

In the proposed AB, we use the hard Tanh activation
function gating mechanism to generate the attention weight,
i.e., −1 ≤ 𝛿(𝑥) = 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 ≤ 1, which can not only adjust
the each channel intensity of the feature map, but can also
control the direction of the output feature. Moreover, the
Tanh function is centrally symmetric with a mean value of 0.
Therefore, it can still map the Gaussian distribution N(0, 1)
to a distribution that maintains the characteristic of zero
mean value. We rescale the F𝑖 with attention weight 𝛼 to
obtain the weighted feature map by adopting the channel-
wise multiplication, and then skip connection is used to fuse
the semantic information between the original feature and the
weighted feature. Based on the above mechanism, the output
A𝑖 of AB can be expressed as

A𝑖 = X𝑖 + F𝑖 ⊙ α. (14)

C. Laplacian Pyramid

The backbone and information flow of the proposed LPAN
follow the Laplacian pyramid framework that is the improve-
ment of Gauss pyramid by introducing the residual coefficients
[34]. In the Gauss pyramid, the original resolution image at
the bottom of pyramid is sequentially downsampled, which
forms a set of images arranged from top to bottom in the
shape of a pyramid according to the size of image resolution.
However, this sampling operation will lose high-frequency
information of images. Let G(Ξ) = [𝚵0,𝚵1, · · · ,𝚵𝑆] denote a
Gauss pyramid with 𝑆 levels, where 𝚵𝑠 (0 < 𝑠 < 𝑆) denotes the
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Fig. 4. The proposed Laplacian pyramid attention network (LPAN) architecture.

𝑠-th level image of the pyramid. The 𝑠-th level of Laplacian
pyramid can be represented as

R𝑠 = G𝑠 (𝚵) − 𝑢 (G𝑠+1 (𝚵)) = 𝚵𝑠 − 𝑢 (𝚵𝑠+1) , (15)

where 𝑢 (𝚵𝑠+1) denotes the upsampling image of 𝚵𝑠+1, and
the residual coefficient R𝑠 represents the high-frequency in-
formation of image.

In the DL-based channel estimation model, the feature map
F compose of high-frequency feature F𝐻 and low-frequency
feature F𝐿 , that is F = F𝐻 +F𝐿 . When we use neural network
to extract the feature of data, the feature map will represent
more high-frequency information for deeper network layer,
while F𝐿 is the important component for the reconstruction
of F. Consequently, we can design the progressive cascaded
channel estimation model by imitating the Laplacian pyramid
architecture, where the upsampling operator 𝑢 (�) and the
Laplacian coefficients R𝑠 is designed by neural network.

D. The Dual-Branch and Multi-Scale Architecture of LPAN

Fig. 4 shows the proposed Laplacian pyramid attention
network (LPAN) architecture with 𝑆 reconstruction modules
(RMs), which progressively upscale the lower-dimensional
channel matrix by a scale of 2 in the reflection element domain
of RIS. The 𝑠-th RM can be divided into two branches, namely
FEB and CRB, which learn the high-frequency information R𝑠
and the low-frequency information U𝑠 of cascaded channel
matrix, respectively. Note that the image size is decreasing
with the increase of the pyramid level 𝑠, while the dimension
of the channel matrix is increasing with the increase of the
number of RM 𝑠, i.e., 𝚵𝑆 = H̄P and 𝚵0 = H̄𝑆 in the channel
estimation.

In the FEB of the 𝑠-th RM, we first use a convolutional
block (CB), which is composed of convolutional layer and
Leaky Rectified Linear Unit (LeakyReLU) activation func-
tional layer, to boost the number of channel of the input
feature map H̄P . Next, 𝐽 ABs are stacked to extract the more
representative features. Generally, normalization layers are
used to stabilize the training process of deep neural network,
e.g., batch normalization (BN) layer. In the SR-based channel
estimation model, the input low-resolution channel matrix has
a similar space distribution to the complete channel matrix,
while BN will change the original data distribution. In the

proposed LPAN, we adopt weight normalization (WN) to
reparameterize the weight vector of the network instead of
normalizing the mini-batch data of each layer in BN [35].
Specifically, WN decouples the original network weight w into
a parameter vector v and a scalar parameter 𝑔 as follows:

w =
𝑔

∥v∥ v, (16)

where v/∥v∥ denotes the identity vector of w. Let ∇wL,
∇𝑔L , and ∇vL represent the gradients of loss function L
with respect to w, 𝑔, and v, respectively. In the process of
network training, the optimization of w is transformed into
the optimization of 𝑔 and v, which are given by

∇𝑔L = ∇𝑔w(∇wL)𝑇 =
∇wL𝑣𝑇
∥v∥ , (17)

∇vL =
𝑔

∥v∥ ∇wL −
𝑔∇𝑔L
∥v∥2 v =

𝑔

∥v∥𝑀w∇wL, (18)

where 𝑀w = I−ww𝑇/∥w∥2 is a projection matrix that projects
onto the complement of the vector w. Compared the with
initial ∇wL, ∇vL scales the weight gradient by 𝑔/| |v| |, and it
projects the gradient away from the current weight vector w,
which can stabilize the training of the network and accelerate
the network convergence.

Compared with BN, the performance of WN is not related
with the batch size and data, and the memory and computation
overhead is lower. Moreover, the SR-based channel estimation
is sensitive to the learning rate 𝜂 with a small value, e.g.,
𝜂 = 10−4 [19]. The training loss of the network without WN
layer will explode for a larger 𝜂, while the small learning rate
is easy to cause overfitting. The WN can provide a wider range
of 𝜂 in the training, which improve the estimation accuracy in
the test phase.

After the feature extraction of 𝐽 ABs in the 𝑠-th RM, we use
an upsampling block (UB) to scale the feature map to a desired
dimension of the channel matrix, e.g., H̄P ∈ R𝑀×𝑃×2 → H̄1 ∈
R𝑀×2𝑃×2 or H̃P ∈ R𝑀×𝑃×2𝐵P → H̃1 ∈ R𝑀×2𝑃×2𝐵 in the first
RM. In the UB, we adopt the nearest interpolation and the
convolutional layer to increase the size of the feature map,
which can avoid check artifacts in the upsampling [36]. Since
the cascaded channel is represented as the real-valued matrix
with two channels, the output of FEB reduces the number of
channels of the feature map to R𝑠 through a CB with 2 filters,
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which is termed as the transition path (TP).
In the second branch of the proposed LPAN, we design the

CRB to characterize the information flow of low-frequency
components in high-dimensional cascaded channel estimation,
which is equal to the function 𝑢 (·) in the Laplacian pyramid.
In the CRB of the 𝑠-th RM, the lower-dimensional channel
matrix is directly upscaled to U𝑠 by the UB. Hence, the output
of the 𝑠-th RM can be expressed as

Ĥ𝑠 = U𝑠 + R𝑠 . (19)

E. Multi-Scale Supervision

To realize the progressive construction for high-dimension
cascaded channel, we adopt multi-scale supervised learning to
generate the cascaded channel matrix with different scales. The
normalized mean squared error (NMSE) is widely used as the
performance metric of channel estimation, which is defined as
NMSE = E[| |Ĥ − H| |2

𝐹
/| |H| |2

𝐹
]. Intuitively, the 𝐿2 loss with

Euclidean distance can directly reflect the NMSE metric. In
fact, for the SR-based channel estimation task, 𝐿1 loss func-
tion with Manhattan distance can achieve better performance
compared with 𝐿2 loss [17]. However, the gradient of 𝐿1 loss
will jump at the extreme point, e.g., zero value, and a small
difference will also lead to a large gradient. As a remedy,
we adopt the Charbonnier loss function to optimize the whole
network [34], which is a differentiable variant of 𝐿1 loss. The
multi-scale supervision based loss function is given by

L(H̄, Ĥ)= 1
B

B∑︁
𝑖=1

𝑆∑︁
𝑠=1

𝜌

(
H̄(𝑖)
𝑠 − Ĥ(𝑖)

𝑠

)
=

1
B

B∑︁
𝑖=1

𝑆∑︁
𝑠=1

𝜌

(
H̄(𝑖)
𝑠 − U(𝑖)

𝑠 − R(𝑖)
𝑠

)
, (20)

where 𝜌(X) =
√

X2 + 𝜀2 is the Charbonnier penalty function, 𝜀
is a regularization parameter, and B is the number of training
sample in each batch. For the case of time-varying channel
estimation, the label H̄ in (20) is replaced as H̃.

Remark 2: Compared with existing SR network-based chan-
nel estimation models, the architecture of the proposed LPAN
has two unique characteristics: 1) progressive upsampling
strategy along the depth direction; and 2) dual-branch pipeline
along the width direction, which increase the network capabil-
ity and realize the fine channel reconstruction. However, such
a structure may cause a more complex network in terms of
parameters and floating point of operations (FLOPs). Specifi-
cally, the computation of neural network is proportional to the
dimension of computed feature map, while the progressive
upsampling strategy in the LPAN will introduce more FLOPs
compared with the post-upsampling SR model, e.g., EDSR.
Besides, the dual-branch architecture of the LPAN introduces
more parameters. To address the aforementioned challenges,
we design a lightweight version of LPAN in the following,
which can achieve good balance between performance and
complexity.
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Fig. 5. The proposed lightweight convolution module in LPAN-L.

IV. LPAN-L: THE LOW-COMPLEXITY ARCHITECTURE
DESIGNING OF LPAN

In this section, we propose a computationally efficient
LPAN-L model for the cascaded channel estimation in RIS
systems, where the network complexity of LPAN is further
optimized from the basic convolution operation and the whole
network architecture. We also develop a transfer learning
framework to efficiently deal with the domain mismatch
problem in the practical deployment of the proposed LPAN-L
model. Finally, we present the model parameters and com-
putational complexity analysis for the proposed LPAN and
LPAN-L model.

A. Lightweight Convolutional Module

In the original AB, two standard convolutional layers are
used to obtain semantic features of the cascaded channel. To
reduce the complexity of AB, we proposed a lightweight atten-
tion block (LAB) by redesigning the two convolutional layers
in the original AB. Fig. 5 shows the designed convolutional
module in the LAB, which consists of group convolution,
dilation convolution, and point-wise convolution.

1) Group convolution: Let X ∈ R𝐶1×𝐷1×𝐷2 and O ∈
R𝐶2×𝐷1×𝐷2 denote the input feature map and output fea-
ture map of convolutional layer, respectively. The 𝛀 ∈
R𝐶2×𝐶1×𝑘1×𝑘2 denotes the filter set of convolutional layer,
where 𝑘1 × 𝑘2 denotes the size of convolutional kernel. In
the standard convolutional layer, each element of 𝑂𝑐2 is
obtained by the convolutional operation between all elements
of X and 𝛀𝑐2 (1 ≤ 𝑐2 ≤ 𝐶2), where the number of
parameters and FLOPs are Υ𝑝 = 𝐶1 × 𝐶2 × 𝑘1 × 𝑘2 and
Υ 𝑓 = 𝐷1 ×𝐷2 ×𝐶1 ×𝐶2 × 𝑘1 × 𝑘2, respectively. Consequently,
the training of large convolutional networks is difficult for
memory limited hardware, e.g., massive mobile terminals. By
designing the group strategy based on standard convolution
layers, the group convolution is an efficient alternative of
dense convolution operations for the CNN architecture. In
the group convolution layer, the tensor X is divided into 𝐿

grouped feature map X𝑙 ∈ R𝐶1/𝐿×𝐷1×𝐷2 along the dimension
of channel. Similarly, we also divide the tensor 𝛀 into 𝐿

group subfilters 𝛀𝑙 ∈ R𝐶2/𝐿×𝐶1/𝐿×𝑘1×𝑘2 . Then, the convolution
operation is carried out between X𝑙 and 𝛀𝑙 . The convolution
results is defined as O𝑙 = X𝑙 ⊗𝛀𝑙 ∈ R𝐶2/𝐿×𝐷1×𝐷2 . Lastly, we
concatenate all O𝑙 along the dimension of the feature channel
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Fig. 6. The receptive field of dilated convolution in LPAN-L.

to obtain the output feature map O ∈ R𝐶2×𝐷1×𝐷2 , which is
given by

O =


X1 ⊗ 𝛀1
X2 ⊗ 𝛀2

...

X𝐿 ⊗ 𝛀𝐿


=


O1
O2
...

O𝐿


. (21)

In the group convolution, the number of parameters and
FLOPs will be reduced with the increase of group number 𝐿,
which can be expressed as Υ𝑝/𝐿 and Υ 𝑓 /𝐿 compared with
standard convolution, respectively.

2) Dilated convolution: Considering the acceptable com-
plexity of neural network, the CNN typically use convolu-
tional layers with small-size convolutional kernels for feature
extraction. With the development global attention mechanism
[31], the insufficient ability to extract global information of
CNN has been amplified, while large convolution kernel is
desired to obtain enough receptive field for CNN architecture.
Since the large convolution kernel will introduce more pa-
rameters and thereby results in high computation complexity,
we use the method of dilated convolution to expand the
receptive field without increasing the additional computation
complexity. Fig. 6 compares the receptive field of the dilated
convolution with the standard convolution, where the solid and
shadow areas represent the effective convolutional operations
and the receptive field, respectively. Let an integer 𝜅 and
𝑘𝑐 = 𝑘1 = 𝑘2 denote the dilation rate and the size of the
original kernel, respectively. The size of dilated convolution
kernel is 𝑘𝑒 = 𝑘𝑐 + (𝑘𝑐 − 1) (𝜅 − 1), where the constant zero is
filled in the dilated location of the dilated convolution kernel.
Further, the receptive field 𝜍 𝑖 of the 𝑖-th dilated convolutional
layer can be expanded as

𝜍 𝑖 = 𝜍𝑖−1 + (𝑘𝑒 − 1)
𝑖−1∏
𝑗=1

Stride 𝑗 , (22)

where Stridej denotes the strides of the 𝑗-th convolutional
layer. Since the convolution kernel 𝑘𝑒 is expanded by the zero
padding, the dilated convolution can obtain the larger receptive
field to capture the long-range dependency of the cascaded
channel feature.

3) Point-wise convolution: In the LAB, we first use two
group convolutions to replace two standard convolutional
layers, which reduces the computations and parameters of
the LPAN model. In the first group convolution, the dilated
convolution kernel is used to expand the receptive field.

Then, we use the point-wise convolution with multiple 1 × 1
convolution kernels to realize cross channel information inter-
action of the feature map obtained by group convolution. The
parameters and FLOPs of Point-wise convolution is 𝐶1 × 𝐶2
and 𝐷1 × 𝐷2 ×𝐶1 ×𝐶2, respectively, which is much less than
that in the general convolutional layer.

B. Deep Recursion and Parameter Sharing

Next, we will reduce the network parameters by decoupling
the architecture characteristic of LPAN. In the each RM of
FEB, we stack 𝐽 ABs to learn the high-frequency component
of the cascaded channel, where the number of network layers
of each AB is the same. Consequently, we adopt the archi-
tecture of recursive layers to replace the original multi-layers
network [37], where a AB carries out 𝐽re (0 ≤ 𝐽re ≤ 𝐽) recur-
sion operations to substitute for 𝐽re ABs. The receptive field
of the convolution layer increases once after each recursion,
while the number of parameters of the network is fixed with
the increase of network depth.

Similarly, the network structure is the same in each RM
for the CRB, which realizes the upsampling mapping from
the low-dimensional channel matrix to the high-dimensional
channel matrix. Since all UBs learn the spatial correlation
of the cascaded channel in CRB, the parameter values of
the network layer are very close. Consequently, we share
the network parameters of the CRB across different pyramid
levels, i.e., 𝑆sh (0 ≤ 𝑆sh ≤ 𝑆) RMs in the LPAN-L. Thus, a
single parameter set can construct the multi-level CRB under
different upsampling scales.

C. Transfer Learning Framework for Domain Adaption

As a data-driven channel estimation scheme, the perfor-
mance of DL-based estimator depends on the matched sam-
pling space between the training stage and the test stage.
Specifically, the involved datasets in the DL estimator are
divided into the source domain data in the training stage
and target domain data in the test stage. In the idea case,
the data distribution in source domain and target domain
is similar. However, in the practical deployment of the DL
estimator, the trained model may need to be applied into the
new communication environments [38]. Moreover, for RIS
systems, the cascaded channel modeling is related to dynamic
parameters, e.g., the RIS location, scatterers distribution, and
carrier frequency. Hence, we develop an efficient transfer
learning framework to realize the cross-domain adaption based
on the proposed LPAN-L architecture.

Firstly, the LPAN-L model is trained in the source domain
Ds = {F s, 𝑃(H̄s,P)} with 𝑁s paired samples, in which F s de-
notes the the feature space of the source domain, and 𝑃(H̄s,P)
denotes the marginal probability distribution with H̄s,P ∈ F s.
The channel estimation task in Ds can be expressed as ℘s =

{Ωs, 𝑃(H̄s |H̄s,P)}, where Ωs represents the label space of Ds

and 𝑃(H̄s |H̄s,P) denotes the posterior probability distribution
with H̄s ∈ Ωs. In fact, the trained model can be regarded
to learn the distribution 𝑃(H̄s |H̄s,P) based on the source
domain data Ds. In the test stage of the LPAN-L model, we
defined the target domain as Dt = {F t, 𝑃(H̄t,P)} composed
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Algorithm 1 Transfer Learning: Selective Fine-tuning
1: Initialization:

𝑖s = 0, 𝑖t = 0,
𝑓 = { 𝑓1, · · · , 𝑓𝑠 , · · · , 𝑓𝑆} with random weights

2: Pre-training in Source Domain Ds:
3: Construct source domain task ℘s with 𝑁s samples
4: while 𝑖s ≤ 𝐸s do
5: update 𝑓 with the gradient of loss function L(H̄s, Ĥs)
6: 𝑖s = 𝑖s + 1
7: end while
8: Transfer Learning in Target Domain Dt:
9: Construct target domain task ℘t with 𝑁 t samples

10: freeze 𝑆f RMs parameters 𝑓 f = { 𝑓1, · · · , 𝑓𝑆f }
11: while 𝑖t ≤ 𝐸 t do
12: only update 𝑓 t = { 𝑓𝑆−𝑆f , · · · , 𝑓𝑆} with the gradient

of loss function L(H̄t, Ĥt)
13: 𝑖t = 𝑖t + 1
14: end while
15: Online Estimation in Target Domain:

Ĥ = (Ĥ1, Ĥ2, · · · , Ĥ𝑆) = 𝑓 (H̄P)

of 𝑁 t ≪ 𝑁s samples, in which F t denotes the the feature
space of the source domain, and 𝑃(H̄t,P) denotes the marginal
probability distribution. Accordingly, the channel estimation
task in Dt can be denoted as ℘t = {Ωt, 𝑃(H̄t |H̄t,P)}, where
Ωt represents the label space of Dt and 𝑃(H̄t |H̄t,P) denotes the
posterior probability distribution. According to the inductive
and homogeneous transfer learning theory, the feature space in
the source domain and target domain satisfies {𝐹s, 𝐹 t} ∈ F ,
while the probability distributions present 𝑃(H̄s,P) ≠ 𝑃(H̄t,P)
and 𝑃(H̄s |H̄s,P) ≠ 𝑃(H̄t |H̄t,P) due to different communication
environments.

Although the difference of the source domain and target
domain restricts the online deployment of the trained model,
the learned knowledge in the source domain can be transfered
into the target domain by utilizing the transfer learning frame-
work. In this work, we exploit a selective fine-tuning strategy-
based transfer learning model, which leverages the multi-
scale hierarchical characteristics of the proposed LPAN-L
architecture. Suppose the proposed LPAN-L model is defined
as 𝑓 , in which the 𝑠-th RM in LPAN-L is denoted as 𝑓𝑠 , i.e.,
𝑓 = { 𝑓1, · · · , 𝑓𝑠 , · · · , 𝑓𝑆}. For the trained model in the source
domain, we selectively freeze the network parameters of
𝑆f (𝑆f < 𝑆) RMs in the LPAN-L model, e.g., from the 1-st RM
to the 𝑆f-th RM. Then, we fine-tune the network parameters
of 𝑆 − 𝑆f RMs in the LPAN-L model by utilizing the limited
target domain samples. The specific fine-tuning procedures of
the transfer learning are provided in Algorithm 1, where the
pre-training epochs 𝐸s are larger than the fine-tuning epochs
𝐸 t. Compared with the pre-training stage, the training cost
in the fine-tuning stage can be reduced because only partial
parameters of the LPAN-L model need to be updated. By
utilizing the proposed transfer learning framework, we only
use limited fine-tuning samples to realize the domain adaption
for the proposed LPAN-L model, which avoids the re-training
process with a large number of target domain samples.

D. Parameters and Computational Complexity Analysis

Suppose the number of the convolutional filters is 𝑤 and
the filter size is 𝑘𝑐 × 𝑘𝑐 for two convolutional layers in the
AB, the parameters and FLOPs of a AB are 𝑤2 (2𝑘2

𝑐 + 1) and
2𝑤2 (𝑘2

𝑐𝐷1𝐷2 + 1), where 𝐷1 and 𝐷2 denote the height and
width of feature map in the AB. Hence, the time complexity of
FEB, CRB, and TP in the 𝑠-th RM is O

(
2𝑠𝑃𝑀𝑤2𝑘𝑐

2 (𝐽 + 1)
)
,

O
(
2𝑠+2𝑃𝑀𝑘𝑐

2
)

and O
(
2𝑠+1𝑃𝑀𝑤𝑘𝑐

2
)
. For the quasi-

static channel estimation, the total time complexity of
LPAN is O

(∑𝑆
𝑠=1 2𝑠𝑃𝑀𝑘𝑐2 (𝑤2 (𝐽 + 1) + 2𝑤 + 4)

)
, while the

time complexity in the time-varying channel estima-
tion is O

(∑𝑆
𝑠=1 2𝑠𝑃𝑀𝑘𝑐2 (𝑤2 (𝐽 + 1) + 𝐵𝑤 + 𝐵2)

)
. The space

complexity of the quasi-static and time-varying chan-
nel estimation are O

(∑𝑆
𝑠=1 𝑘𝑐

2 (𝑤2 (2𝐽 + 1) + 2𝑤 + 4)
)

and

O
(∑𝑆

𝑠=1 𝑘𝑐
2 (𝑤2 (2𝐽 + 1) + 𝐵𝑤 + 𝐵2)

)
, respectively.

In the LPAN-L architecture, the parameters and FLOPs of
a LAB are 𝑤2𝑘𝑐

2 (1/𝑔1 + 1/𝑔2 + 1) and 𝑤2𝑘2
𝑐𝐷1𝐷2 (1/𝑔1 +

1/𝑔2 + 2), where 𝑔1 and 𝑔2 denote the group number of
the first and second group convolution layer in the LAB,
respectively. Let 𝐽 lw

𝑠 and 𝐽re
𝑠 , 0 ≤ 𝐽 lw

𝑠 , 𝐽
re
𝑠 ≤ 𝐽, denote the

number of LABs and recursion operations in the 𝑠-th RM,
respectively. For the case of the quasi-static channel estima-
tion, the time complexity of FEB in the 𝑠-th RM is reduced
to O

(
2𝑠−1𝑃𝑀𝑤2𝑘𝑐

2 (2(𝐽 − 𝐽 lw
𝑠 ) + (1/𝑔1 + 1/𝑔2)𝐽 lw

𝑠 + 2)
)

in
LPAN-L. For the time complexity of CRB and TP in the
𝑠-th RM, the LPAN-L model is the same with LPAN.
The space complexities of FEB and CRB are reduced
to O

( ∑𝑆
𝑠=1 𝑤

2𝑘𝑐
2 (2(𝐽 − 𝐽re

𝑠 ) + (1/𝑔1 + 1/𝑔2)𝐽re
𝑠 )

)
and

O
(
(𝑆 − 𝑆sh)4𝑘𝑐2

)
, respectively. The similar complexity re-

duction can be obtained for the time-varying channel estima-
tion. Hence, both parameters and computation complexity of
the proposed LPAN-L model are efficiently reduced compared
to the LPAN model.

V. NUMERICAL RESULTS

In this section, we first present the simulation setting,
including the system parameters of the RIS-aided mmWave
communications and hyper-parameters adopted for the net-
work training. Then, we provide the numerical results to
verify the channel estimation performance of the proposed
LPAN in terms of estimation accuracy, convergence speed,
and robustness.

A. Simulation Setup

In the simulation, we set 𝑀 = 8×8, 𝑁 = 16×16 and 𝐾 = 6
for the RIS-aided multi-user massive MIMO communication
system. The mmWave communication frequency is set to 𝑓𝑐 =

28 GHz and the parameter 𝜆𝑝 is set to 𝜆𝑝 = 1.8 [39]. The
angular spread is set to 𝜎 = 𝜎𝜑 = 𝜎𝜙 = 5◦. The Poisson
distribution and uniform distribution are used to model the
cluster 𝐶 ∼ max{𝑃(𝜆𝑝), 1} and scatters of each cluster 𝑆𝑐 ∼
U[1,𝑈], respectively. Unless otherwise specified, we set 𝑈 =

30, 𝑛0 = 3.19, 𝑏0 = 0.06, 𝜎𝑥 = 8.29 dB, and 𝑓0 = 24.2 GHz
for NLOS path in the path loss model, while 𝑛0 = 1.73, 𝑏0 =
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TABLE I
THE HYPER-PARAMETERS FOR THE BASELINE LPAN

Hyper-Parameter Value
The number of RM 𝑆 3

The number of AB 𝐽 in each RM 4
The number of LAB 𝐽lw

𝑠 , (1 ≤ 𝑠 ≤ 𝑆 − 1) 2
The number of recursion 𝐽re

𝑠 , (1 ≤ 𝑠 ≤ 𝑆 − 1) 2
The number of LAB 𝐽lw

𝑆
in the 𝑆-th RM 4

The number of recursion 𝐽re
𝑆

in the 𝑆-th RM 4
The number of the first group 𝑔1 in LAB 16

The number of the second group 𝑔2 in LAB 4
The number of shared UB 𝑆sh in CRB 2

The number of filters 𝑤 in each LAB/AB 96
The size of standard kernel (𝑘𝑐 , 𝑘𝑐) (3, 3)

The dilation rate of kernel 𝜅 2
The total epochs 𝐸s 100

The initial learning rate 𝜂0 1 × 10−3

The end of learning rate 𝜂1 5 × 10−6

The regularization parameter 𝜀 10−4

The training batchsize B 64

0.06, and 𝜎𝑥 = 3.02 dB for LOS path [23]. In the source
domain scenario, the three-dimensional coordinates of BS and
RIS are set to (𝑥BS, 𝑦BS, 𝑧BS) = (0, 25, 2), (𝑥RIS, 𝑦RIS, 𝑧RIS) =
(40, 50, 2), respectively. To mitigate the serve multiplicative
fading effect for cascaded reflection link in RIS systems, the
coordinates of UE are randomly distributed in the 1 m height
with a horizontal radius of 8 m centered on RIS. According
to the 3GPP LTE-A standard [29], we set the EVM 𝜌 = 𝜌𝑡 =

𝜌𝑟 = 0.1 and the error of ON/OFF mode 𝜖 = 𝜖1 = 𝜖0 = 0.01
[27]. We define 𝑟 = 𝑃

𝑁
= 1
𝑘

as the ratio of the number of the
activated RIS elements to the total elements, where 𝑃 pilots
are used for the LS pre-estimation.

In the pre-training dataset construction, we generate 𝑁𝑘 =

5 × 103 paired samples for each user to construct the dataset,
i.e., total samples of 𝑁s = 𝐾𝑁𝑘 = 3 × 104. The range of
training SNR is set to [0, 20] dB with the interval of 5 dB to
generate the received pilot signal Y. In the training process,
we adopt the cosine learning rate decay schedule to avoid
converge directly to a poor local minimum point, where the
learning rate 𝜂𝑖 at the 𝑖-th training epoch is given by

𝜂𝑖 = 𝜂0 +
1
2
(𝜂1 − 𝜂0)

(
1 + cos

(
𝑖

𝐸s 𝜋

))
, 0 ≤ 𝑖 ≤ 𝐸s, (23)

where 𝜂0, 𝜂1 and 𝐸s represent initial learning rate, final
learning rate and the total number of epochs, respectively.
Table I shows the detailed training hyper-parameters of the
baseline LPAN.

B. Performance Comparison for Different Estimation Schemes

In Fig. 7, we compare the NMSE performance of the
proposed LPAN with the traditional estimators, i.e., binary
reflection protocol-based LS estimator [27], PARAllel FACtor
decomposition-based alternating LS (ALS) estimator [40],
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Fig. 7. NMSE performance for different channel estimation schemes.

[41], empirical linear minimum mean square error (LMMSE)
estimator [15], [42], and OMP algorithms [12], as well as
other SR networks, i.e., SRCNN [18] and EDSR [19]. In the
traditional algorithms, the required pilot overhead is set to
𝑄LS = 𝑄LMMSE = 𝑁 and 𝑄OMP = 𝑁/2, respectively, while
the required pilot overhead is 𝑄DL = 𝑃 = 𝑁/2𝑆 = 𝑁/8 for
DL-based channel estimation networks. In the SRCNN and
EDSR, the UB is designed at the input and output layers
of the network, respectively. To demonstrate the impact of
upsampling strategy on channel estimation, we modify the
single-step up-sampling in the SRCNN to the asymptotic
sampling with 2 times factor, which is termed as PSRCNN
in Fig. 7. For the fair comparison of different networks, the
number of filters and the depth of network layers are set to
the same values for EDSR and LPAN.

As the classic linear estimator, the estimation accuracy
of LS and LMMSE algorithm is non-ideal for unacceptable
noise and HWIs. Note that the required second order statistics
of the LMMSE estimator are replaced by the Monte Carlo-
based empirical correlation matrix with training samples in
Fig. 7. In the clustered statistical MIMO channel modeling
of RIS systems, the sparsity of the cascaded channel is
variable and relatively large due to the extensive scatters,
which limit the estimation performance of OMP. The SR-based
channel estimation is related to the method and location of
the upsampling. In the SRCNN, the single-step upsampling,
i.e., H̄P ∈ R𝑀×𝑃×2 → H̄𝑆 ∈ R𝑀×𝑁×2, will introduce
serve interpolation errors in the input layer, which results
in limited recovery effect of the subsequent network, and
the high-dimensional input also increases the computational
complexity of the network. The PSRCNN is an improved
model from the SRCNN, which progressively upscaling the
low-dimensional input tensor to the complete dimension of
𝑀×𝑁×2 with 2 times upsampling factor, and thereby reduces
the interpolation error of input data. In the EDSR, a large
number of residual blocks are stacked before upsampling,
and then the extracted efficient features are used to the final
reconstruction. This post-upsampling architecture can reduce
the computational complexity and improve the reconstruction
performance. However, the post-upsampling layer is difficult
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TABLE II
TRAINING OVERHEAD FOR DIFFERENT NETWORKS

LPAN LPAN-L LPAN-L (small) LPAN-L (medium) LPAN-L (large) EDSR
Model size (MB) 18.1 9.33 3.2 4.9 11.4 9.46
Parameters (M) 2.37 1.09 0.483 0.659 1.45 2.25

FLOPs (G) 11.953 6.06 3.72 4.46 8.53 6.49
Average NMSE (dB) -22.7 -22.3 -20.1 -20.9 -22.4 -19.6
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Fig. 8. Convergence performance with training epochs 𝐸 of DL estimators.

to recover the high-resolution cascaded channel matrix directly
when the upsampling factor is large. In the proposed LPAN
with superior channel estimation performance, we further
optimize the location of up-sampling by introducing the multi-
scale supervision, where the UB is embedded in the network
from low dimension to high dimension to realize progressive
reconstruction of the cascaded channel matrix. Furthermore,
the lightweight LPAN-L architecture is developed to reduce
the network complexity with sight performance loss.

Table II compares the required memory, parameters and
FLOPs for different channel estimation schemes, in which we
provide the NMSE performance of different LPAN-L variants
with different scales of network parameter, i.e., the small-size,
medium-size and large-size LPAN-L by controlling hyper-
parameters 𝑔1, 𝑔2, 𝐽 lw

𝑠 and 𝐽re
𝑠 in Table I. In the original

LPAN architecture, we design the CRB to obtain the low-
frequency component of cascaded channel, which introduces
more network parameters compared with EDSR. In addition,
the progressive upsampling operation in each RM increases
the computational complexity because the size of feature
map is enlarged. Compared with the proposed LPAN model,
the LPAN-L adopts the group convolution operation and the
parameter sharing strategy to reduce half of the parameters and
the computation complexity, while providing a close perfor-
mance to LPAN. We observe that the performance gap between
the LPAN and the LPAN-L will be progressively reduced by
increasing the network size of the LPAN-L. Moreover, the
small-size LPAN-L model is still superior the EDSR model in
terms of channel estimation accuracy and network complexity.

In Fig. 8, we show the convergence speed of different chan-
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nel estimation models, where we use the average NMSE of
validation set as the performance evaluation metric. Compared
with the existing schemes, the convergence of the proposed
schemes is more stable and fast with the increase of training
epochs 𝐸 . Based on the cascaded channel matrix estimated
by different estimation schemes, we further compares the
achievable sum-rate performance of different DL estimators
in Fig. 9. Suppose v𝑘 ∈ C𝑀×1 is the normalized precoding
vector at the BS for 𝑘-th UE, the signal-to-interference-plus-
distortion-noise-ratio for the UE𝑘 can be expressed as

𝛾𝑘 =
𝑝𝑘

��v𝑇
𝑘
H𝑘θ

��2
𝜌̄𝑝𝑘

��v𝑇
𝑘
H𝑘θ

��2 + 𝑝𝑘 𝐾∑
𝑖=1,𝑖≠𝑘

(1 + 𝜌̄)
��v𝑇
𝑖
H𝑘θ

��2 + 𝛿2
𝑛

, (24)

where 𝜌̄ = 𝜌2
𝑡 + 𝜌2

𝑟 . Furthermore, the achievable sum-rate of
RIS systems can be calculated by 𝑅 =

∑𝐾
𝑘=1 log2 (1 + 𝛾𝑘).

Following the work of [43], we adopt the cross-entropy
optimization method to determine the precoding matrix V =

[v1, v2, · · · , v𝐾 ] at the BS and reflecting vector θ at the RIS,
where we set 𝑏 = 2 bits discrete reflection phase shift con-
sidering the hardware constraint, i.e., 𝜃𝑖 ∈ {+1,−1, +1 𝑗 ,−1 𝑗}.
Fig. 9 shows the achievable sum-rate of RIS-aided communi-
cation system by utilizing the estimated cascaded channel of
different models. The LPAN-based channel estimation scheme
can achieve better achievable sum-rate compared with other es-
timation schemes, while the achievable sum-rate performance
of both LPAN and LPAN-L is very close.

C. Robustness Analysis for the Proposed LPAN-L Model

In Fig. 10, we presents the NMSE performance of the
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Fig. 10. NMSE performance of LPAN-L for different mobility speeds 𝑣.
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Fig. 11. NMSE performance of LPAN-L under different pilot overhead 𝑟 .

proposed LPAN-L under different mobility speeds 𝑣, in which
the number of pilot block is set to 𝐵p = 2 within a frame with
𝐵 = 6 blocks, and the sampling period 𝑇𝑏 of each time block is
fixed as 𝑇𝑏 = 1/(4 𝑓 𝑑max) ≈ 0.24 ms. With the increase of 𝑣, the
coherence time 𝑇𝑐 will be shorter and the channel variation of
consecutive time blocks within a frame will be faster. Hence,
the channel estimation accuracy of the proposed LPAN-L will
be sightly decreased, while a stable NMSE performance can be
obtained even for the high-speed scenario with 𝑣 = 60 km/h.
Note that we pretrain the LPAN-L with 𝑁𝑇 = 3 ∗ 104 samples
for the case of 𝑣 = 60 km/h in the network training, while the
transfer learning is used to fine-tune the LPAN-L model with
limited samples for the cases of 𝑣 = 20 and 𝑣 = 40 km/h.

Fig. 11 shows the NMSE performance of the proposed
LPAN-L under different pilot overhead ratios 𝑟. The baseline
LPAN-L model in simulation composes of 3 RMs, each of
which realize 2 times upsampling based on the input tensor.
The pilot overhead for baseline LPAN-L is 𝑃 = 1

23 𝑁 = 1
8𝑁 .

To reduce the training overhead of LPAN-L under different
pilot lengths, we use the pretrained model of the baseline
LPAN-L to initialize the network weights. Specifically, if
𝑟 < 1

8 , we only increase the UBs in the last RM based on
baseline LPAN-L, e.g., adding 1 UB when 𝑟 = 1

16 , while the
network weights of 𝑠(1 ≤ 𝑠 ≤ 𝑆 − 1) th RM are initialized
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Fig. 12. NMSE performance of LPAN-L under different number of refection
elements 𝑁 .
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Fig. 13. NMSE performance of LPAN-L under different HWIs (𝜖 , 𝜌) .

by baseline LPAN. Conversely, we delete partial RMs for
larger 𝑟, e.g., deleting 1 UB when 𝑟 = 1

4 . By leveraging
the pretrained model, we only use half of the sample size
and training epochs for other pilot length, i.e., 𝑟 = 1

16 or 1
4 .

With the decrease of 𝑟, the required upsampling dimension
will be larger, so the high-dimensional channel reconstruction
becomes more challenging. Nevertheless, LPAN can achieve
satisfactory channel estimation accuracy even with small pilot
overhead, e.g., 𝑃 = 𝑁𝑟 = 8.

Fig. 12 presents the NMSE performance of the proposed
LPAN-L under different number of RIS elements 𝑁 . For the
DFT protocol-based LS estimator, the NMSE performance
of channel estimation can be improved with the increase of
𝑁 [15]. In this case, the more accurate pre-estimated input
tensor can be obtained for the DL model. Hence, the channel
estimation accuracy of the LPAN-L model is also improved.
Thanks to the multi-scale pyramid architecture of the LPAN-
L model, the same LPAN-L architecture is compatible with
the RIS with different sizes. Note that the network complexity
will be increased for the larger-size RIS because the operating
dimension of the feature map in LPAN-L is boosted.

In Fig. 13, we study the NMSE performance of the proposed
LPAN-L for different degrees of HWIs, where the LPAN-
L is trained under the fixed HWIs sets (𝜖, 𝜌) = (0.01, 0.1).
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Fig. 14. NMSE performance of LPAN-L under different angular spreads 𝜎
and scattering distribution (𝜆𝑝 ,𝑈) .

-10 -5 0 5 10 15 20 25 30

SNR(dB)

-30

-25

-20

-15

-10

-5

0

5

N
M

S
E

(d
B

)

Pre-training Model in Target 1

Pre-training Model in Target 2

Fine-tuning Model in Target 1

Fine-tuning Model in Target 2

Retraining Model in Target 1

Retraining Model in Target 2

Fig. 15. NMSE performance of the transfer learning-based LPAN-L model.

With the increase of levels of HWIs (𝜖, 𝜌), the estimation
accuracy of the LS pre-estimation will be decreased, which
introduces more estimation error into the input tensor of the
DL model and results in the performance degradation of the
LPAN-L model. However, since the neural network is robust
for a certain degree of disturbance of input data, even under
severe HWIs, i.e., (𝜖, 𝜌) = (0.02, 0.15), the LPAN-L can still
achieve satisfactory performance.

Fig. 14 shows the NMSE performance of the proposed
LPAN-L under different scattering distributions, in which the
LPAN-L model is trained with the given scattering distribution,
i.e., angular spread 𝜎 = 0.5 and the scattering distribution
(𝜆𝑝 ,𝑈) = (1.8, 30) in the training stage. We observe that the
trained LPAN-L model can work well under different scatter-
ing distributions in the test stage, in which the LPAN-L model
has better robustness for the scattering parameters (𝜆𝑝 ,𝑈).
This stable performance benefits from the various channel
samples generation in the training dataset construction, in
which we adopt the dynamic cascaded channel modeling with
randomly distributed scatters.

D. Domain Adaption Performance for Transfer Learning

In Fig. 15, we provide the transfer learning performance of
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Fig. 16. NMSE performance for different attention modules in LPAN-L.

the LPAN model for two cases of the spatial-varying target
domain. For the case of target domain 1, the RIS is placed
at the x-z plane (the opposite-wall for users) instead of the
y-z plane (the side-wall for users) in the source domain. On
the basis of target domain 1, the scenario of target domain
2 further considers the case of different cells, in which the
carrier frequencies of neighbor cells are different to avoid the
inter-cell interference, and the path loss model in equation
(2) has different system parameters. Due to the difference of
data distribution, the pre-trained model in the source domain
can not be directly applied to the channel estimation in the
target domain. By utilizing the proposed selective fine-tuning
strategy, the fine-tuning model can obtain stable NMSE per-
formance in the source domain. We also provide a completely
retrained LPAN model in the target domain as the performance
lower bound. The required training samples and epochs are
𝑁 r = 𝑁𝑘 ×𝐾 and 𝐸 r = 𝐸s for the retraining scheme. However,
in Fig. 15, the proposed transfer learning framework only
needs 𝑁 t = 𝑁 r/10 samples and 𝐸 t = 𝐸 r/5 epochs.

E. Ablation Experiment for the Proposed Attention Block

Fig. 16 shows the ablation experiment to verify the ef-
fectiveness of the proposed AB, in which we provide three
benchmarks for the attention mechanism variants. Specifically,
the convolution-based residual module without attention mech-
anism is used as the basic benchmark [17], [32]. We also
compare the existing channel attention and spatial channel
modules [21], [44], which generates the channel attention
weight 𝑧c ∈ R𝐶×1×1 from the feature channel dimension
and the spatial attention weight 𝑧s ∈ R1×𝐷1×𝐷2 from the
spatial dimension of the feature map, respectively. We observe
that the channel estimation accuracy can be improved by
introducing the attention mechanism into the FEB of the
LPAN-L model. Compared with the excitation operation of
the existing attention modules, the proposed AB can retain
the direct correspondence between channel of feature map and
attention weight by adding the single FC layer. Furthermore,
the Tanh activation can restrict the attention weight to a more
reasonable range. Consequently, the proposed AB can achieve
better NMSE performance with more simple architecture.
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VI. CONCLUSIONS

In this paper, we have proposed a progressive cascaded
channel reconstruction strategy by utilizing the multi-scale
supervised learning for RIS-aided multi-user mmWave com-
munication systems. In contrast to the one-step reconstruc-
tion used in previous works, we have designed the pyramid
network to implement channel extrapolation hierarchically.
The proposed LPAN with dual branch architecture separately
extract the high frequency and low frequency information of
the cascaded channel matrix, and then the residual learning
with attention mechanism is used to realize information fusion.
Moreover, we have designed the efficient convolution opera-
tion and parameter sharing strategy to construct the lightweight
LPAN-L model. Numerical results show that the proposed
LPAN and LPAN-L with limited pilot overhead is superior
to existing channel estimation schemes, and have good ro-
bustness for different system setups. The developed transfer
learning framework provides a domain adaptive solution for
the practical deployment of the proposed channel estimation
model. In the future works, we will extend the multi-scale
pyramid architecture to higher-dimensional channel estimation
scenarios, e.g., cooperative communications of multi-hop RISs
[4] and Holographic intelligent surfaces [45].
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